In algebra word problems are commonplace, though they confuse many. Use this free lesson to help you learn how to solve word problems.

Here's Problem 2:

Flor and Mo both donated money to the same charity. Flor gave three times as much as Mo. Between the two of them, they donated $280. How much money did Mo give?

Answer: **$70**

Let's go through this problem one step at a time.

Start by asking **what question the problem is asking you to solve** and identifying the** information that will help you solve it**. What's the question here?

Flor and Mo both donated money to the same charity. Flor gave three times as much as Mo. Between the two of them, they donated $280. __How much money did Mo give?__

To solve the problem, you'll have to find out how much money Mo gave to charity. All the important information you need is in the problem:

- The amount Flor donated is
**three times as much**the amount Mo donated - Flor and Mo's donations add up to
**$280 total**

The unknown number we're trying to identify in this problem is **Mo's donation**. We'll represent it with the variable *m*.

Here's the problem again. This time, the important facts are highlighted.

Flor and Mo both donated money to the same charity. __Flor gave three times as much as Mo__. Between the two of them, __they donated $280__. How much money did Mo give?

The important facts of the problem could also be expressed this way:

Mo's donation plus Flor's donation equals $280

Because we know that Flor's donation is **three times** as much as Mo's donation, we could go even further and say:

Mo's donation plus three times Mo's donation equals $280

We can translate this into a math problem in only a few steps. Here's how:

- Because we've already said we'll represent the amount of Mo's donation with the variable
*m*, let's start by replacing**Mo's donation**with*m*. - Next, we can put in
**mathematical operators**in place of certain words. We'll also take out the dollar sign. - Finally, let's write
**three times**mathematically.**Three times**can also be written as*m**3*⋅*m*, or just 3*m*.

m plus three times m equals $280

m + three times m = 280

m + 3m = 280

It will only take a few steps to solve this problem.

- To get the correct answer, we'll have to get
*m*alone on one side of the equation. - To start, let's add
*m*and 3*m*. That's 4*m*. - We can get rid of the 4 next to the
*m*by dividing**both sides**by 4.**4**is*m*/ 4*m*, and**280 / 4**is 70.

m + 3m = 280

4m = 280

m = 70.

We've got our answer: ** m = 70**. In other words,

The answer to our problem is **$70**, but we should check just to be sure. Let's look at our problem again.

Flor and Mo both donated money to the same charity. Flor gave three times as much as Mo. Between the two of them, they donated $280. How much money did Mo give?

If our answer is correct, **$70** and **three times $70** should add up to $280.

- We can write our new equation like this:
- The order of operations calls for us to multiply first.
**3 ⋅ 70**is 210. - The last step is to add 70 and 210.
**70**plus**210**equals 280.

70 + 3 ⋅ 70 = 280

70 + 210 = 280

280 = 280

280 is the combined cost of the tickets in our original problem. Our answer is **correct**: Mo gave $70 to charity.

Want even more practice? Try out a short assessment to test your skills by clicking the link below: